
" -■\      ^ 

AD_ 

Award Number:  DAMD17-02-1-0716 

TITLE:  Portable Physical Activity Monitors for Measuring Energy 
Metabolism in ROTC Cadets 

PRINCIPAL INVESTIGATOR:  Kong Y. Chen, Ph.D. 

CONTRACTING ORGANIZATION:  VanderbiIt University Medical Center 
Nashville, Tennessee 37232-2103 

REPORT DATE:  September 2003 

TYPE OF REPORT:  Annual 

PREPARED FOR:  U.S. Army Medical Research and Materiel Command 
Fort Detrick, Maryland 21702-5012 

DISTRIBUTION STATEMENT: Approved for Public Release; 
Distribution Unlimited 

The views, opinions and/or findings contained in this report are 
those of the author(s) and should not be construed as an official 
Department of the Army position, policy or decision \inless so 
designated by other documentation. 

20031216 125 

__. 

■v_ 



REPORT DOCUMENTATION PAGE 
Form Approved 

0MB No. 074-0188 
Public repocttng burden fbr this collection of infbmetion is esb'nnted to average 1 hour per response, induding the time f^ 
the data needed, and completing and reviewing this collection or infbnnation. Send comments regarding this burden estimate or any other aspect of this collection of infbmetion, Including suggeslicns for 
reducing this burden to Washington H^Klquarters Services, Directorate fbr Information Operations and Reports, 121S Jefferson Davis Highv«ay, Suite 1204, Arlington. VA 22202-4302, and to the CMce of 
Management and Budget Papenmorit Reduction Project (0704^)188), Washington, DC 20503 

1. AGENCY USE ONLY 
(Leave blankj 

2. REPORT DATE 
September 2003 

3. REPORT TYPE AND DATES COVERED 
Annual   (1 Oct 2002 - 30 Sep 2003) 

4. TITLE AND SUBTITLE 
Portable Physical Activity Monitors for Measuring Energy 
Metabolism in ROTC Cadets 

6. AUTHORtS) 
Kong y. Chen, Ph.D. 

5. FUNDING NUMBERS 
DAMD17-02-1-0716 

7. PERFORMING ORGANIZATIONNAME(S) AND ADDRESSfES) 
Vanderbilt University Medical Center 
Nashville,  Tennessee    37232-2103 

E-MaB:     kong. chen@vanderbilt. edu 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9.  SPONSORING/MONrrORING 
AGENCY NAMEfSI AND ADDRESSfES) 

U.S. Arniy Medical Research and Materiel Command 
Fort Detrick, Maryland 21702-5012 

to. SPONSORING / MONTTORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. IMSTRIBUTION/AVAILABILITY STATEMENT 
Approved for Public Release; Distribution Unlimited 

726. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 Words) 

The announcement of the Research Program in Technologies for Metabolic Monitoring (DAMD17- 
BAA-TMM02) called for »new, novel and unconventional approaches to the field of metabolic 
monitoring.' Given the significance of physical activity and energy expenditure (EE) to 
health for both military and civilian populations, we proposed a feasibility study to 
achieve the following goals: 1) to develop and validate non-invasive portable techniques 
in monitoring detailed physical activity and accurately predict EE, and 2) to determine 
specific physical training related energy costs and physiological responses in ROTC 
cadets. The specific tasks are: 1) To measuring physical activity and EE xmder laboratory 
conditions. 2) To develop accurate EE prediction models. 3) To measure energy demands 
during field training in ROTC cadets. 4) To perform nutritional and fitness assessments. 
We have designed a two-stage data collection periods, expanding one academic year (Fall- 
Spring) . Despite several delays, we initiated the studies in September 2003. Up-to-date, 
we have collected 58, 83, and 100% data for tasks 1,3 and 4, respectively, for the 1*' 
stage assessments. We will complete this stage at the end of November 2003 and the data 
processing for task 2 will be perfoinned. Phase 2 of the study is being planned. 

74. SUBJECT TERMS 
No Subject Terms Provided. 

75. NUMBER OF PAGES 
38 

16. PRICE CODE 

17. SECURTTY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. UMITAVON OF ABSTRACT 

Unlimited 
NSN 7540-01-280-5500 Standard Fonn 298 (Rev. 2-89) 

PratcribMl by ANSI Std. Z39.18 
298-102 



Table of Contents 

COVER  1 

SF298  2 

Table of Contents  3 

Introduction ■  4 

BODY  4 

Key Research Accomplishments  6 

Reportable Outcomes  6 

Conclusions  6 

References  6 

Appendices  7 



INTRODUCTION 
» 

This proposed study was in response to the specific call from the US Army Medical Research and Materiel 
Command (MRMC) for Technology of Metabolic Monitoring program (DAMD-BAA-TMM02), in which 
research projects were solicited to "identify and assess technologies that can improve our ability to collect and 
interpret metabolic data ... and to use that data to extend our understanding of human metabolism in healthy, 
diseased, and stressed states". The predominant contributor to a person's energy metabolism is physical 
activity. However, current knowledge in physical activity and its contribution to the health and diseases of 
humans is limited. This is mostly due to limited technology in accurate and detail measurements of the highly 
variable nature of human physical activity and its related energy expenditure (EE). Our research expertise and 
environment position us in an inimitable position for developing and vaUdating portable devices for EE 
measurement in humans. In this study, we propose to develop a novel and non-invasive approach to accurately 
determining the detailed metabohc demands in ROTC cadets during physical training (PT). This study will 
establish close collaborations between clinical researchers and biomedical engineers in advancing the 
technologies of portable metabolic monitoring, which are essential in determining the inner relationships 
between energy balance and health for military personnel (Fridel et. al, 1997) as well as the general pubHc. 
Working in close collaboration with the Vanderbilt University Army ROTC program, we will further 
investigate the physiological demands during PT, while setting long-term goals to optimize soldiers' health, 
fitness, and conditionings. 

BODY 

The approved specific tasks for this project are: 1) ascertain simultaneous physical movement data from a new 
activity/posture monitor and EE data from our room calorimeter; 2) establish accurate models of prediction EE 
from the body motion parameters; 3) validate the accuracy and reproducibility of the models with gold-standard 
techniques under field conditions; and 4) assess nutritional, fitness, and other physiological measures 
prospectively. We are approved to study 12 Vanderbih ROTC cadets. The approved schedule is as the 
following: 

Protocol Calendar 

09-2003        10 11 12 01-2004 02 03 04 05 
r T T \\ 

08-2004 
n 

Academic Calendar 
Fall 2003 Winter Spring 2004 

: Summer 
Data process 

Week 1 (baseline) 

Doubly-labeled water total energy expenditure 

Field tests during regular PT 
Task 3. PT periods (AM or PM): IDEEA, SenseWear, Heart rate, & KAb^ 
Task 4. Body composition, V02max, & Ibod intake. 

-L 
DayO 

Hour 07:00 13:00 19:00 01:00 07:00 

Figure 1. Approved study design and timeline. 



Accomplishments to date: 

Pre-testing: we have successfully recruited 12 cadets (10 males and 2 females; 8 Caucasians, 2 African- 
American, 1 Asian, and 1 other). The general characteristics are: 

Mean ± SD Range 

Body mass (kg) 79.2 ±13.8 60.3-100.0 

Height (cm) 176.4 ±8.23 158.0-188.0 
Age(yrs) 19.8 ±1.0 18-21 

BMI (kg • m-^) 25.3 ±3.4 20.2-30.2 

We received the Surgeon General's Army Human Subjects Research Review Board (HSRRB) approval in July 
10*, 2003. 

Task 1: For week 1 (1*' of the two phases), we have collected seven 24-hour period data, with all five others 
schedule to complete by November 23''^, 2003. There were no adverse events during these testings. 

Task 2: We will proceed with data processing as soon as we finished the five collections from Task 1. This is to 
minimize processing bias and errors while improving efficiency. 

Task 3: We have attempted field data acquisition in 11 of the 12 recruited cadets, complete data was collected in 
eight of the 11 trials. We are currently pre-processing such data. 

Task 4: We have measured body composition in 11/12 cadets, and in all 12 for fitness levels (V02max) and 
food intake. The results of the body composition and fitness levels are as follow: 

Mean ± SD Range 

Body Composition (%fat)             17.5 ± 7.2 7.1 - 31.2 

V02max (ml 02 /kg • min) 53.8 ± 8.0 43.0-69.5 

Problems encountered: 

Pre-testing: 

Delay of testing cycle: due to the actual fimding did not start until October 2002, our original proposed testing 
cycle (with academic year) had to be change to 1 year later. This was approved. 

Acquiring doubly-labeled water (DLW): although we started the process of finding suppliers immediately after 
we received grant approval, we were only able to get enough isotopes for 12 cadets in October 2003. We then 
change the original design of validation from using the DLW for both Phases to only the final Phase, and 
received approval. 

Task 3: 
Since our test instruments are not waterproof, several of all field trials were proponed due to weather. 

Our original proposal of field trials was designed to be conducted in the afternoon PT sessions. However, 
starting the Fall 2003 semester, all Vanderbilt Army ROTC PT has been changed to 0600 AM. Since it takes 
about 20 minutes to equip a test subject with all the test instruments, the demands on testing cadets to be in the 
field about 1 hour earlier (3-4 trials conducted simultaneously, as approved) has been somewhat challenging. 
We have also encountered some incomplete collections (3 from the K4b^, 1 from the IDEEA, and 4 from the 



heart rate monitors) during these field trials, of which some were due to operational errors in the darkness, and 
others were due to equipment failure. We are researching potential improvements to decrease errors in our 
future field trials for Phase 2. 

Key Research Accomplishments 

Technical improvements in physical activity monitoring devices. 
Development of advanced analytical modeling techniques. 

Reportable Outcomes 

1. During the last funding period, the PI was invited to present in the Metabolic Monitoring Technologies for 
Military Field Applications. Committee on Military Nutrition Research Food and Nutrition Board. Listitute 
of Medicine, the National Academies, Jan 8-9,2003. (With an invited manuscript to the lOM report, please 
see Appendix I). 

2. The PI also submitted a manuscript (using previously collected data) to the Diabetes Technology & Therapy 
in March 2003, which will be pubhshed in the December 2003 issue in the Military MetaboUc Monitoring 
Section (please see Appendix II). 

Conclusions 

• This study should initiate the crucial steps towards fundamental changes in the development of field 
techniques to accurately measure detailed physical activity and EEACT- 

• The results of this research should also lead to larger studies to better evaluate the physical and 
physiological demands involved in physical trainings in military personnel. 

• The apphcations of these devices in the field need further modifications. 

Reference 

1.      Friedl KE, Hoyt RW. (1997) Development and biomedical testing of military operation rations. Annu 
Rev Nutr. 17:51-75. 
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INTRODUCTION 

"A soldier's level of physical fitness has a direct impact on his combat readiness" (US 

Army, 1998). The balance of energy intake (El) and energy expenditure (EE) can significantly 

affect soldiers' physical fitness, conditioning, and overall health. The predonunant contributor to 

the variations of EE is physical activity. Unlike most civiUan populations, soldiers often are 

subjected to extreme negative energy balance (EE far exceeds El) (Fridel et. al, 1997). In order 

to achieve optimum energy balance, accurate and detailed measurements of both El and EE are 

crucial. However, our current techniques in assessing physical activity are limited, such that 

possible associations between physical activity and the related EE (EEACT) with respect to the 

health and performance in military personnel have not been well determined. 

Daily EE can be categorized into three major components: basal or resting EE (also 

called basal metabolic rate, or BMR), thermic effect of food (or food-mduced thermogenesis), 

and EEACT- Resting EE is the rate of EE measured in postabsorptive, well rested, and 

thermoneutral conditions. In sedentary subjects, resting EE is the major component of EE (Flatt 

1978). Inter-individual variations in resting EE of normal humans can be explained by 

differences in fat-free mass (the primary contributor), age, sex, familial traits, and fat mass 

(Ravussin et. al, 1986,1987). Thermic effect of food represents the increase in EE foUowmg 

meal ingestion for absorbing, processing, and storing the nutrients. There are two recognized 

subcomponents, obligatory and facultative thermogenesis, which combine to represent a small 

component to total EE (<8-10%) (Jequier et. al,1988 and Wells et. al, 1981). EEACT is the largest 

variability to total EE in humans. Moderate walking can increase EE by 3 times, while a more 

vigorous activity such as running can elevate EE by 10 times. Compared to civilians who 

generally have more sedentary lifestyles, EEACT is particularly important in soldiers' nutritional 



and physiological state, affecting performance and overall health (DeLany et. al, 1989 and 

Burstein et. al, 1996). 

MATERIAL AND METHODS 

Measuring energy expenditure 

Doubly Labeled Water (DLW) is considered as the "gold standard" for measuring EE in 

the field or fi-ee-living conditions. It determines the net disappearance of hydrogen (in water) and 

oxygen (in water and carbon dioxide) by labeling them with stable isotopes ^Ha'^O (Schoeller, et. 

al, 1982, 1996). The major advantage of the DLW is its non-invasiveness and non-intrusiveness. 

It has been used to assess EE of soldiers in the field and the impact of different rations (DeLany 

1989), climates (Burstein 1996), and other training conditions (Forbes-Ewan et. al, 1989). 

However, the main limitation of DLW is that it measures total EE during a period of 7-14 days, 

without being able to detect the type, duration, and intensity of physical activity, or to trace 

variations in physical activity and related EE within certain periods. Furthermore, the high cost 

and relative limited availability of '*0 make this method difficult to apply. 

Indirect calorimetry is the "gold standard" method of measuring resting EE, thermic 

effect of food, and EEACT under controlled or laboratory enviroiunents. It uses a facemask, a 

ventilated hood, or a respiratory chamber (Sim et. al, 1994), to measure oxygen consumption and 

carbon dioxide production non-invasively. Major advantages of indirect calorimetry are the 

immediate and detailed measurements of the rates of EE and nutrient oxidation. The major 

disadvantage is the limited application under fi-ee-living conditions. 

Methods of assessing physical activity 

Studying the relationship between physical activity and health is complicated by the 

variable nature of physical activity. A particularly challenging area has been the development 



and application of accurate, valid, and cost-effective techniques to quantify physical activity 

under field conditions (Wilson et. al, 1986, Paffenbarger et. al, 1993, and Washbum et. al. 1986). 

Numerous methods have been utilized to measure EE during physical activities. They vary 

greatly in their usefulness in different study populations and designs (Shultz et. al, 2001). They 

can generally be categorized as subjective and objective methods. 

Subjective methods include the use of direct observations, physical activity records, and 

survey and recall questionnaires. These techniques are used for various time periods and settings. 

Although inexpensive and easy to implement, their accuracies are severely limited by the 

recording, recall, interviewer, and other biases. Results from most subjective physical activity 

monitoring methods are also difficult to quantify and to compare inter-individually. Predictions 

of EEACT using these methods could be further flawed by interpretation and translation errors. 

Objective metliods for current measurements of physical activity mainly consist of 

mechanical/electronic devices. Since walking and running are the most common types of 

physical activities, step counters are often used estimate overall activity levels. Several types of 

step counters exist, including pedometers using a mechanical movement counter (Bassey et. al, 

1987 and Washbum et. al, 1980), mercury switches (Cauley et. al, 1987), and electronic load 

transducers and foot contact monitors inserted into the heels of shoes sensing loads held, lifted, 

or carried, and walking activity (Barber et. al, 1973, Dion et. al, 1982, Hoyt et. al, 1994, and 

Weyand et. al, 2001). These are generally simple, small, and relatively inexpensive devices that 

are based on the principle that EEACT is correlated with individual step fi-equency and foot 

contact times (Kram et. al, 1990). The main limitation is that the sensitivity and accuracy of step 

counting may vary significantly among activity types inter- and inti-a-individually. Furthermore, 

stride lengths, a crucial element of the velocity and distance traveled, are usually estimated. 



Researchers have recently focused on an array of new activity monitors based on 

accelerometers, which directly measure body movements in terms of acceleration. The most 

currently used accelerometers are piezoelectric sensors that detect accelerations in one (typically 

vertical direction) or in three orthogonal planes (anterior-posterior, lateral, and vertical). Results 

can be recorded in a microcomputer. Most current marketed monitors are usually placed on the 

hip or waist (for its closeness to the center of body mass), although ankle or wrist monitors are 

also used. Caltrac, Tritrac-R3D (both by Hemokinetics, Madison WI), RT3 (Stayhealthy, 

Monrovia CA), Computer Science and Application (CSA, Shalimar FL), Tracmor (Maastricht, 

The Netherlands), and ActiWatch (Minimitter, Sunriver OR) are just a few examples of 

marketed systems. In several validation studies using these monitors, correlation values ranged 

from 0.65 to 0.92 between EE measured by indirect calorimetry and accelerometer readings 

during various activities (Bray et. al, 1994, Bouten et. al, 1994, Chen, et. al, 1997, and Freedson 

et. al, 1998), where level walking showed the highest correlation with the waist worn triaxial 

accelerometers. The advantages of the accelerometry devices include their small size and most 

are wireless, non-invasiveness, and minimally intrusive to normal subject movements during 

daily activities. Additionally, they are easy to use for subjects and testers, detectable relative 

mtensity, frequency, and duration, and the ability for extended measuring periods (minute-by- 

minute data for up to 28 days), thus making free-living monitoring more feasible. The major 

limitations include their inability to detect activity types for which the associations between 

measured acceleration and EEACT are dependent upon, single site monitoring that is unable to 

detect movements from other body segments, limited prediction algorithms to estimate EEACT 

across a wide range (Chen 1997), and inability to differentiate EE due to postural changes and 

other low intensity physical activities. To compensate for these errors, a combination of using 



accelerometry devices and inclmometer(s) or mercury switches was used to detect posture and 

motions were reported (Levine et. al, 2001 and Walker et. al, 1997). Recently, several research 

labs have reported the feasibility of using accelerometer arrays that were positioned at different 

body segments, mainly the chest and thighs, to monitor the types of activities by postural 

identifications (Fahrenberg et. al, 1997, Foerster et. al, 2000, Bussman et. al, 2001, Zhang et. al, 

2003). However, EEACT predictions from these monitors have yet to be careftiUy validated. 

Works from the Vanderbilt Energy Balance Lab 

Equipped with the state-of-the-art whole-room indirect calorimeter at Vanderbilt, we are 

in a unique environment to develop and validate methods of EEACT predictions using portable 

activity monitors. The room calorimeter is a small, airtight environmental room (2.6x3.3x2.3 m^, 

19,500 liters in net volume), equipped with a desk, chair, outside window, toilet, sink, telephone, 

TVAi^CR, audio system/alarm clock, and fold-down mattress to simulate free-living conditions 

(Figure 1). Oxygen consumption and carbon dioxide production are calculated by measuring the 

changes of oxygen and carbon dioxide content of the air inside the calorimeter and by the flow 

rate of the purged air times its concentration of gases. A special multi-channel air sampling 

system was designed to ensure an even sampling of the gas expired by the subject. Temperature, 

baromefric pressure, and humidity of the room are precisely controlled and monitored. With 

these measures, the minute-by-minute EE is calculated with the highest precision reported (>90% 

with each minute and >99% over 24 hours) (Sun 1994). 

RESULTS 

In a previous study (Chen 1997), we used a hip-worn triaxial accelerometer monitor, the 

Tritrac-R3D Research Ergometer (Hemokinetics, Inc. Madison WI), to detect body motion 

during physical activities. A heterogeneous group of healthy adult volunteers (85 women and 40 



men) each spent two separate 24-hr periods (one day with non-intensive walking and stepping 

exercises and the other day without, respectively denoted exercise and normal days) in our room 

calorimeter, where each subject's minute-by-minute EE and body movements were measured 

sunultaneously. The Tritrac-R3D's simple linear prediction model, using the combined signal 

from all three axes, significantly underestimated EEACT (by 33% and 49%) and total EE (by 17% 

and 26%) for normal and exercise days, respectively (Figure 2, parts A and B). Using the EE 

and acceleration data measured during the exercise day, body acceleration components (A) 

measured by the Tritrac-R3D were fitted into a non-linear two-parameter model: 

EEACT — O X A horizontal       + b X A vertical     , 

where coefficients a, b, pi, andp2 were determined by optimization with mmimimi prediction 

error for each study individual. Resuhs showed significant improvements (all P<0.001) in 

modeling total EEACT (Figure 2, part C), standard error estimation parameters, and correlation 

coefficients. We then applied the developed models to the measured acceleration during the 

second 24-hr period (normal day) and demonstrate that the predicted EEACT were significantly 

(P<0.001) better than the Tritrac-R3D model in estimating EEACT and total EE (Figure 2, part D). 

Furthermore, we showed that a generalized model, using subject's gender, weight, height, and 

age to replace the individualized coefficients (a, b, pi, andp2 from the equation above, shown in 

Figure 2, parts C and D), was also superior to the one-parameter-linear model by Tritrac-R3D. 

However, periods of EEACT, particularly of lower intensities, were still underestimated, 

potentially due to inadequate movement detections of the upper body motion. In a recent study, 

we used a similar study design and measured EE during a 24-hr period in the room calorimeter in 

60 healthy volunteers. Body movements were simultaneously measured using the same Trifrac- 

R3D triaxial accelerometer (worn at the hip). We added a wrist accelerometer (ActiWatch64, 



Minimitter, Sunriver OR) on the dominant arm for upper body movement measurements. The 

non-Unear power-fitting model was then expanded to include the arm accelerations: 

EEACT — O X A hip, horizontal      "^ O X A hip, vertical      "T C X A arm    > 

We found the Tritrac-R3D and the ActiWatch combined model accurately estimated EEACT in all 

intensity categories compared to measured EEACT by the calorimeter (Figure 3). The particular 

improvements were in the measurement of lower intensity physical activities, in which sedentary 

individuals tend to spend most of their time. A second 24-hour study was repeated in a subgroup 

of 12 volunteers and showed accurate EEACT prediction compare to measured values (Figure 4). 

DISCUSSION AND CONCLUSIONS 

In view of the number of current field techniques for measuring detailed physical activity, 

accelerometers have been shown to be valid and usefial. However, the applications of portable 

monitors to accurately predict energy demands in military personnel during training and field 

operations are unique. Compared to the more sedentary civilian populations for whom the most 

current activity monitors are designed, soldiers participate in routine training regiments that are 

often subject to increased physical demands. Marching and running with significant added loads 

(>10kg), crawling, jumping, climbing, and many other lifting or pulling activities are just a few 

of the activity types that will present challenges to existing technologies. Furthermore, many 

trainings and operations are conducted in extreme external environmental conditions, such as hot 

or cold climates (Burstein 1996), dry desert or humid jungles (Forbes-Ewan 1989), and high 

altitude (Hoyt et. al, 1994), while the internal stress from the imbalance of high total energy 

demands vs. low energy intake, sleep deprivation, fatigue, and psychological stress (Nindl et. al, 

2002 and Troumbley et. al, 1990) may further exacerbate the complexity of the physical activity 

and EEACT estimations. Thus, we need to develop and optimize more specific portable methods 



for the measurements of the various activity types, intensities, durations, and frequencies, and 

extend to the associated energy demands in military personnel during sustained field operations. 

Two general areas of improvement are: sensor technologies and model development. 

Current marketed accelerometry activity monitors primarily use the piezoresistive 

sensors, either stand-alone or build in the surface-mounted and integrated chips. Although mostly 

unpublished, the ranges of acceleration are generally 0.05-1.0 g, with resolution of 0.02 or worse, 

and sampling rates of 32 Hz or lower. Although this may be sufficient for monitoring majority of 

the physical movements of the center of mass (e.g., for the hip-worn units), movements of upper 

extremities can have higher frequency components and may exceed the maximum range in short 

bursts. These limitations would introduce inaccuracies in measurements. Most current activity 

monitors only use the dynamic component (or the AC component) of the raw signals from the 

sensors, partially due to the fact that the baseline (or the static or DC component) of piezoelectric 

sensors drifts with temperature and directional changes. However, if the sensor(s) are positioned 

at proper locations, such as the chest, it may be useftil to access such baseline change with 

respect to sensor direction for assessing body postures, which may indicate the type of the 

activities. The dynamic signal from the sensor is generally filtered (corrected for baseline drifts), 

digitized, fiiU-wave rectified (turn the negative values to positive), and integrated to 15-second 

epoch or longer to yield the output of activity coxmts. Although most of the current accelerometry 

monitors are packaged for easy operations for field researchers, almost all current marketed 

monitors do not allow user to change key parameters such as sampling rate or to collect raw 

signals, which are crucial to improve signal ranges and enables model improvements. 

Since current available monitors have lunited ability to detect wide ranges of physical 

activity types and intensities, the modeling of the acceleration output to predict EEACT is an area 



that needs much more development. We have demonstrated that the acceleration components 

recorded in the separate directions can be weighed differently to enhance EEACT prediction, due 

to body movements in the vertical axis normally demand more energy due to the increased work 

against gravity, such as in the cases of weight-bearing activities walking, running, and steppmg 

(Haymes et. al. 1993 and Wong et. al. 1981). Thus, the weighing of the contributions in EEACT 

prediction models should reflect such differences. Furthermore, the linear relationship between 

the acceleration and EEACT may not be the pertinent model for all activity types and intensities. 

We have demonstrated the development and the validations of a relatively simple power 

prediction model that significantly improved the EEACT estimation from a linear model. 

The placement of the monitor is also important. Previous studies have confirmed that the 

center of mass (near waist level) is the ideal site for monitoring, particularly for weight-bearing 

activities that contribute to the largest dynamic changes in energy cost. From our unpublished 

data, we have also seen that minute-to-minute EE during a 24-hr period correlated significantly 

better with raw measurements of physical activity by a hip-worn triaxial accelerometer 

(R=0.825±0.046) than with a wrist-worn uniaxial accelerometer (0.646±0.093, P<0.001, N=60). 

However, previous studies also illustrated that a single hip-worn monitor would be inadequate in 

measuring various physical activity types and intensities. Therefore, combination models that 

combine signals from multiple body segments need to be explored for improved accuracy in 

predicting EEACT- 

In addition, other assessment techniques involve physiological measurements may also 

be incorporated with simultaneous accelerometry monitoring to fiirther improve EEACT 

modeling. An example is the use of heart rate monitors. They present a simple and objective 

method for the estimation of EE during certain levels of physical activity and exercise (Spurr et. 

10 



al, 1986). Moreover, heart rate monitoring may facilitate the measurements on fatigue, state of 

hydration, body temperature changes, and emotional state (stress) that could affect the energy 

metabolism (Yoshida et. al, 1994 and Nielsen et. al, 1993). Other physiological parameters, such 

as core body temperature (Gass et. al, 1998 and van Marken et. al, 2001), galvanic skin 

conductance (estimating heat loss through sweatmg), and surface electromyography (measures of 

muscular activity), may also be explored to optimize the prediction of EEACT- 

In summary, to enhance our abilities to assess the energy demands in soldiers in the field, 

future research in technologies should focus on small and wireless sensors that can be positioned 

non-invasively and non-intrusively to measiu-e body movements as well as physiological 

responses. Accelerometers are suitable for many aspects of the physical activity monitoring; 

however, much can be improved to increase their sensitivity and further reduce their size. The 

complex nature of the human physical activity patterns, large inter- and intra-individual 

differences in energetic efficiencies, and inherent limitations of the sensors, dictates that the 

development of models to accurately predict EEACT should integrate more unique features of the 

signals from the sensors. This requires that we collect the raw signals from sensors. Moreover, 

advanced pattern recognition and automated classification modeling techniques, such as artificial 

neural networks that can incorporate multiple input parameters and output feedbacks for non- 

linear and adaptive modeling, need to be explored. The ideal development processes of such 

portable activity monitors should include the use of a respiratory chamber for sensor and model 

explorations under laboratory conditions, portable indirect calorimeter imits for short-term field 

evaluations, and DLW for overall validations. Furthermore, we should optimize such monitoring 

systems to the specific appUcations through modeling, such as weather conditions and external 

loads, while broadening the general applications to civilian medical research. 

11 



REFERENCES 

1. Barber C, Evans D, Fentem PH, Wilson MA. (1973) A simple load transducer suitable for 

long-term recording of activity patterns in human subjects. J Physiol (Land). 231:94-95. 

2. Bassey EJ, Dallosso HM, Fentem PH, Irving JM, Patrick JM. (1987) Validation of a simple 

estimation of walking activity. Eur J Appl Physiol. 56:323-330. 

3. Bouten CV, Westerterp KR, Verduin M, Janssen JD. (1994) Assessment of energy 

expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc. 

12:1516-1523. 

4. Bray MS, Wong WW, Morrow JR, Butte NF, Pivamik JM. (1994) Caltrac versus 

calorimeter determination of 24-hour energy expenditure in female children and 

adolescents. Med Sci Sports Exerc. 26:1524-1530. 

5. Burstein R, Moran D, Coward AW et al. (1996) Energy expenditure variations in soldiers 

performing military activities under cold and hot climate conditions. Mil Med. 161(12): 

750-754. 

6. Bussman JBJ, Martens WLJ, Tulen JHM, et al. (2001) Measuring daily behavior using 

ambulatory accelerometry: the activity monitor. Behav Res Methods Inst Comp. 33:349- 

356. 

7. Cauley, JA, LaPorte RE, Black-Sandier R, Schramm M.M, Kriska AM. (1987) Comparison 

of methods to measure physical activity in postmenopausal women. Am J Clin Nutr. 

45:1422. 

8. Chen KY, Sun M. Improving energy expenditure estimation by using a triaxial 

accelerometer. (1997) J Appl Physiol. 83(6): 2112-2122. 

9. DeLanyJP,Schoeller DA, HoytRW, Askew EW, Sharp MA. (1989) Field use of Dz'^O 

12 



to measure energy expenditure of soldiers at different energy intake. J Appl Physiol. 

67(5): 1922-1929. 

10. Dion JL, Foufllot JP, Leblanc A. Ambulatory monitoring of walking using a thin capacitive 

force transducer. (1982) In: Scott FD, Raftery EB, Clement DL, Wright SL, eds. 

Proceedings of the 4th international symposium on ambulatory monitoring, and the second 

gent workshop on blood pressure variability. London: Academic Press. 420- 425. 

11. Fahrenberg J, Foerster F, Mueller W, Smeja M. (1997) Assessment of posture and motion 

by multi-channel piezoresistive accelerometer recordings. Psychophysiology. 34:607-612. 

12. Flatt JP. (1978) The biochemistry of energy expenditure. In: Recent Advances in Obesity II, 

edited by Gray, G.S. London: Newmann, 211-228. 

13. Foerster F, Fahrenberg, J. (2000) Motion pattern and posture: Correctly assessed by 

calibrated accelerometers. Behav Res Methods Inst Comp. 32:450-457. 

14. Forbes-Ewan CH, Morrissey BL, Gregg GC, Waters DR. (1989) Use of doubly labeled 

water technique in soldiers training for jungle warfare. J Appl Physiol. 67(1): 14-18. 

15. Freedson PS, Melanson E, Sirard J. (1998) Calibration of the Computer Science and 

Applications, Inc. accelerometer. Med Sci Sports Exerc. 30:777-781. 

16. Friedl KE, Hoyt RW. (1997) Development and biomedical testing of military operation 

rations. Aimu Rev Nutr. 17:51-75. 

17. Gass EM, Gass GC. (1998) Rectal and esophageal temperatures during upper and lower 

body exercise. Euro J Appl Physio. 78(l):38-42. 

18. Haymes EM, Byrnes WC. (1993) Walking and running energy expenditure estimated by 

Caltrac and mdirect calorimetry. Med Sci Sports Exerc. 25:1365-1369. 

19. Hoyt RW, Knapik JJ, Lanza JF, Jones BH, Staab JS. (1994) Ambulatory foot contact 

13 



monitor to estimate metabolic cost of human locomotion. J Appl Physiol. 76(4):1818-1822 

20. Jequier E, Schutz Y.  Energy expenditure in obesity and diabetes. (1998) Diabetes Metab 

Rev. 4: 583-593. 

21. Kram R, Taylor CR. (1990) Energetics of running: a new prospective. Nature Lond. 

346:265-267. 

22. Levine JA, Melanson EL, Westerterp KR, Hill JO. (2001) Measurement of the 

components of nonexercise activity thermogenesis. Am J Physiol Endocrinol Metab. 

281:670-675. 

23. Nielsen B, Astnip A, Samuelsen P, Wenghoh H, Christensen NJ. (1993) Effect of physical 

training on thermogenic response to cold and ephedrine in obesity. Intern J Obes Rel Metab 

Disord. 17:383-90. 

24. Nindl BC, Leone CD, Tharion WJ, et al. (2002) Physical performance responses during 72 h 

of military operational stress. Med Sci Sports Exerc. 34(11):1814-1822. 

25. Paffenbarger RS, Blair SN, Lee IM, Hyde RT. (1993) Measurement of physical activity to 

assess health effect in free-living populations. Med Sci Sports Exerc. 25:60-70. 

26. Ravussin E, Bogardus C. (1989) Relationship of genetics, age, and physical fitness to daily 

energy expenditure and fuel utilization. Am J Clin Nutr. 49: 968-975. 

27. Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C. (1986) Determinants of 

24-hour energy expenditure in man: methods and results using a respiratory chamber. J Clin 

Invest 78: 1568-1578. 

28. Schoeller DA, Hlinicka JM. (1996) Reliability of the doubly labeled water method for the 

measurement of total daily energy expenditure in free living subjects. J Nutr. 126:348S- 

354S. 

14 



29. Schoeller DA, Ravussin E, Schutz Y, Acheson P, Baertschi P, Jequier E. (1982) Energy 

expenditure by doubly labeled water: validation and proposed calculation. Am J Physiol. 

250:R823-R830. 

30. Shultz Y, Weinsier RL, Hunter GR. (2001) Assessment of free-living physical activity in 

humans: an overview of current available and proposed new measures. Obesity Research. 

9:368:379. 

31. Spun- GB, Prentice AM, Day KC, et al. (1986) Energy expenditure from minute-by-minute 

heart rate recording: comparison with indirect calorimetry. Am J Clin Nutr. 44:596-602. 

32. Sun M, Reed GW, Hill JO. (1994) Modification of a whole-room calorimeter for measurement 

of rapid changes in energy expenditure. J Appl Physiol. 2686-2691. 

33. Troumbley PF, Rinkle WJ, Burman KD, Lenz ER. (1990) A comparison of the health risk, 

health status, self-motivation, psychological symptomatic distress, and physical fitness of 

overweight and normal-weight soldiers. Mil Med. 155(9): 424-429. 

34. US Army (1998) Physical fitness training field manual (FM21-20). Page 1. 

35. Van Marken Lichtenbelt WD, Westerterp-Plantenga MS, Van Haydonek P. (2001) 

Individual variation in the relation between body temperature and energy expenditure in 

response to elevated ambient temperature. Physio Behav 73(102): 235-242. 

36. Walker DJ, Heslop PS, Plummer CJ, Essex T, Chandker S. (1997) A continues patient 

activity monitor: validation and relation to disability. Physiol Meas. 18:49-59. 

37. Washbum RA, Montoye HJ. (1986) The assessment of physical activity by questionnaire. 

Am J Epidem. 125:563-576. 

38. Washbum R, Chin MK, Montoye HJ. (1980) Accuracy of pedometer in walking and 

running. Res Q Exerc Sports. 51:695-702. 

15 



39. Welles S, Lilavivat U, Campbell RG. (1981) Thermic effect of feeding in man: increased 

norepinephrine levels following glucose but not protein or fat consumption. Metabolism. 

30:953-958. 

40. Weyand PG, Kelly M, Blackadar T, et al. (2001) Ambulatory estimates of maximal aerobic 

power from foot -ground contact times and heart rates in running himians. J Appl Physiol. 

91(l):451-8 

41. Wilson PWF, Paffenbarger RS, Morris JN, Havlik RJ. (1986) Assessment methods for 

physical activity and physical fitness in population studies. Am Heart J. 11:1177-1192. 

42. Wong TC, Webster JG, Montoye HJ, Washbum R. (1981) Portable accelerometer device 

for measuring human energy expenditure. IEEE Trans Biomed. Eng. 28:467-471. 

43. Yoshida T, Sakane N, Umekawa T, Kondo M. (1994) Relationship between basal metabolic 

rate, thermogenic response to caffeine, and body weight loss following combined low 

calorie and exercise treatment in obese women. Intern J Obes Rel Metab Disord. 18:345-50. 

44. Zhang K, Werner P, Sun M, Pi-Sunyer FX, Boozer C. (2003) Measurement of human daily 

physical activity. Obes Res. 11:33-40. 

16 



Figure legends 

Figure 1.        The whole-room indirect calorimeter at Vanderbilt University. 

Figure 2.        Total daily energy expenditure (TEE) estimated by the Tritrac-R3D model (A. 

Exercise Day, and B. Normal Day) in 85 healthy women and 40 men, and by the 

two-component nonlinear models (C. Exercise Day, and D. Normal Day) versus 

TEE measured by the calorimeter. The line of identity signifies a perfect match 

between the estimated and the measured values in the room calorimeter. In C and 

D, individual (Ind.) model represents the parameters fitted for each voltmteer 

(from A and B), and general (Gen.) model represents the model using only the 

subject's gender, weight, height, and age to replace the individualized coefficients. 

Figure 3.        Averaged energy expenditure (EE) in separate intensity categories of one 24-hour 

period in 60 healthy sedentary women (age 35.4±9.0 years and BMI 30.0±5.9 

kg/m^). Comparison between EE measured in the whole-room indirect 

calorimeter, estimated by the ActiWatch, the Tritrac-R3D, and the ActiWatch and 

Tritrac-R3D monitors combined. METs: metaboUc equivalents, calculated as ratio 

of individual energy expenditure and resting energy expenditure. (* P<0.05 

compared to the measured values). 

Figure 4.        Total energy expenditure of physical activity (EEACT) in 12 healthy women during 

two 24-hr periods (identical protocol) measured in the room calorimeter, 

compared to the estimated from the activity monitors. One day was randomly 

selected for fitting with combinations of ActiWatch on the wrist of the dominant 

hand and Tritrac-R3D at the waist, and the second day used as prediction 

validation. 
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ABSTRACT 

To investigate the association between physical activity and health, we need accurate and de- 
tailed free-living physical activity measurements. The determination of energy expenditure 
of activity (EEACT) may also be useful in the treatment and maintenance of nutritional dis- 
eases such as diabetes mellitus. Minute-to-minute energy expenditure during a 24-h period 
was measured in 60 sedentary normal female volunteers (35.4 ± 9.0 years, body mass index 
30.0 ± 5.9 kg/m^), using a state-of-the-art whole-room indirect calorimeter. The activities 
ranged from sedentary deskwork to walking and stepping at different intensities. Body move- 
ments were simultaneously measured using a hip-worn triaxial accelerometer (Tritrac-R3D, 
Hemokentics, Inc., Madison, Wisconsin) and a wrist-worn uniaxial accelerometer (ActiWatch 
AW64, MiniMitter Co., Sunriver, Oregon) on the dominant arm. Movement data from the ac- 
celerometers were used to develop nonlinear prediction models (separately and combined) to 
estimate EEACT and compared for accuracy. In a subgroup (n = 12), a second 24-h study pe- 
riod was repeated for cross-validation of the combined model. The combined model, using 
Tritrac-R3D and ActiWatch, accurately estimated total EEACT (97.7 ± 3.2% of the measured 
values, p = 0.781), as compared with using ActiWatch (86.0 ± 4.7%, p < 0.001) or Tritrac-R3D 
(90.0 ± 4.6%, p < 0.001) alone. This model was also accurate for all intensity categories dur- 
ing various physical activities. The subgroup cross-validation also showed accurate and re- 
producible predictions by the combination model. In this study, we demonstrated that move- 
ment measured using accelerometers at the hip and wrist could be used to accurately predict 
EEACT of various types and intensity of activities. This concept can be extended to develop 
valid models for the accurate measurement of free-living energy metabolism in clinical pop- 
ulations. 
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INTRODUCTION 

PHYSICAL ACTIVITY has been known to be have 
beneficial effects on overall health, particu- 

larly in decreasing the incidence of morbid- 
ity/mortality associated with common chronic 
diseases such as coronary heart disease, hy- 
pertension, and type II diabetes.'-^ However, 
little quantitative evidence has yielded causal 
relationships,^'* mostly because of the large in- 
dividual and time variations in the character- 
istics of the parameters of activity and health, 
and the lack of ability to accurately quantify 
physical activity. For example, both observa- 
tional studies and clinical trials in a variety of 
populations have supported the hypothesis 
that physical activity plays a significant role in 
the prevention and treatment of type II dia- 
betes, but what is less clear is how much phys- 
ical activity is needed.^'^ Objective and accurate 
measurements of physical activity and energy 
expenditure (EE) are crucial in the treatment 
and maintenance of such chronic diseases. 

EE of activity (EEACT) varies within and 
among individuals, and contributes the largest 
variability to total EE in humans.^ This contri- 
bution has significant consequences on overall 
energy balance, which determines the long- 
term body weight outcome. The current stan- 
dard in objective measuring methods for EE are 
doubly labeled water^-^ and the indirect 
calorimeteK.*°ii The doubly labeled water 
method provides a mean value of EE for the 
entire measurement period, usually around 
10-14 days, and does not allow one to calcu- 
late the day-to-day variation in EE. The other 
disadvantages of the technique are its high cost 
and the limited availability of '^O. The indirect 
calorimeter is the best method to measure the 
components of daily EE [resting EE (REE), ther- 
mic effect of food, and EEACTI- It is relatively 
simple, and can be used either with a ventilated 
hood system (for a resting subject) or in a res- 
piratory chamber for a longer period of time.^^ 
A major advantage of indirect calorimetry is 
the immediate response of oxygen consump- 
tion. Another advantage of indirect calorime- 
try in comparison with other methods is the 
possibility of assessing nutrient oxidation rates. 
However, it can only measure EE accurately 
under laboratory conditions. 

Portable accelerometers, developed to objec- 
tively measure body movements and record 
detailed data for an extensive period, have been 
adopted to assess physical activities and EE- 
^^.j, 13-20 ^e previously showed that EE esti- 
mated by a hip-worn triaxial accelerometer 
(Tritrac-R3D, Hemokentics, Inc., Madison, WI) 
significantly underestimated EEACT as com- 
pared with EEACT measured by a whole-room 
indirect calorimeter.'^ We then developed and 
validated a nonlinear model that used the ac- 
celeration components from the Tritrac-R3D 
for the estimation of EEACT- Although the esti- 
mation was accurate for the group, individual 
variation in EEACT prediction still existed, po- 
tentially because of undetected upper body 
movements. Since small errors over time can 
be significantly contribute to overall energy 
balance, our mission is to minimize individual 
errors. Therefore, we hypothesize that by 
adding an upper-body acceleration component 
(measured by ActiWatch AW64, MiniMitter 
Co., Sunriver, OR) to our previous hip-worn ac- 
celerometer model, the overall estimation ac- 
curacy of EEACT would be improved, com- 
pared with using each individual monitor 
alone. This investigation was also to demon- 
strate the process of using a whole-room indi- 
rect calorimeter to develop subject-specific 
EEACT predictive equations from portable ac- 
celerometers in humans. 

SUBJECTS AND METHODS 

Subjects 

The data were part of a prospective study 
looking at possible seasonal variations in phys- 
ical activity in sedentary women. A group of 
normal healthy women (n = 60) of heteroge- 
neous characteristics and sedentary by self-re- 
port wa^recruited from local areas. Signed in- 
formed consent approved by the Institutional 
Review Board at Vanderbilt University was ob- 
tained before their participation in the study. 
Women were eligible for participation if they 
were apparently healthy, with no evidence of 
past or present metabolic diseases (e.g., thyroid 
disorders and type II diabetes), were not preg- 
nant as determined by a serum pregnancy test. 
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did not use drugs known to affect energy me- 
tabolism, were eating a balanced diet, and were 
non-smokers. All participants were studied be- 
tween days 3 and 12 after the onset of menses 
(foUicular phase) to eliminate the influence of 
menstrual function on energy expenditure.^^ 
Study participants were compensated for tak- 
ing part in the study. During the 2 weeks prior 
to the study, all participants were encouraged 
to maintain their normal pattern of activity. To 
cross-validate the models developed from this 
study, a randomly selected subgroup of sub- 
jects was asked to volunteer to repeat the pro- 
tocol under identical conditions within 4 days 
of the first study. Characteristics of all study 
•participants are shown in Table 1. 

Experimental procedures 

All participants reported to the General Clin- 
ical Research Center (GCRC) after a 10-h 
overnight fast. The 24-h study protocol in- 
volved spontaneous daily activities and an ex- 
ercise protocol that was similar to the manual 
work and leisure activities that participants 
would perform in daily life. Specifically, the ex- 
ercise protocol consisted of three 10-min walk- 
ing periods with average speeds of 0.6 m/s, 0.9 
m/s, and 1.2 m/s across the room and three 
10-min stepping periods with average speed of 
12 steps/10 s, 18 steps/10 s, and 24 steps/min, 
respectively, all with at least 10-min resting pe- 
riods between each exercise. During the walk- 
ing and stepping segments, subjects followed 
the appropriate exercise cadence set by a 
metronome. The spontaneous physical activi- 
ties included various types and intensities, 
such as sitting, TV viewing, deskwork, walk- 
ing around the room, and even some voluntary 

exercises using the provided treadmill and 
stepper. Meals designed by the registered di- 
etitian to maintain approximate energy balance 
were prepared at the Vanderbilt University 
GCRC metabolic kitchen and provided to the 
subject at 8:30 a.m., 12:30 p.m., and 5:00 p.m. 
The participants were asked to go to bed from 
9:30 p.m. until 6:00 a.m. 

Measurement of physical activity. The Tritrac- 
R3D monitor (weighing 170 g and measuring 
11.1 X 6.7 X 3.2 cm) was placed in a nylon 
pouch secured to the belt at the waistline on 
the right hip to measure body acceleration in 
three dimensions (x or anteroposterior, y or 
vertical, and zor medial-lateral axis). The Ac- 
tiWatch (weighing 17 g and measuring 2.8 X 
2.7 X 1 cm), a uniaxial accelerometer, was worn 
at the wrist of the dominant hand to assess arm 
movements. The ActiWatch was worn during 
the entire study period, while the Tritrac-R3D 
was not worn during sleep for better comfort. 
Both monitors were set to record data at 1-min 
intervals. 

Measurement ofEE. The rate of EE was mea- 
sured minute-by-minute in a whole-room in- ^—-v^^ 
direct calorimeter (Fig. 1), an airtight environ-<( F1 ) 
mental room that is temperature and humidity 
controlled. To provide facilities for daily living 
and to bridge the difference between laboratory 
and free-living environments, the room is 
equipped with a desk, chair, outside window, 
toilet, sink, telephone, TV/VCR, audio sys- 
tem/alarm clock, and fold-down mattress. It 
has been validated as a highly accurate system 
for determining detailed EE and physical ac- 
tivity. ^''^^ Oxygen consumption (Vo2) and car- 

TABLE 1.   SUBJECT PHYSICAL CHARACTERISTICS 

All(n-- = 60) Subgroup (h = --12) 

Mean ± SD Range Mean ± SD Range 

Body mass (kg) 
Height (cm) 
Age (yrs) 
BMI 0<g m-2) 

70.7 ± 16.4 
164.9 ± 7.3 
35.4 ± 9.0 
30.0 ± 5.9 

45.0-131.1 
151.0-184.0 
20.0-52.0 
16.7-47.0 

65.9 ± 9.4 
164.9 ± 8.3 
27.6 ± 5.1« 
24.2 ± 2.3 

54.4-83.5 
156.0-184.0 
22.0-38.0 
21.4-30.3 

BMI, body mass index. 
^Significantly different compared with the rest of the subjects (n = 48), p = 0.004. 
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FIG. 1.   Schematic diagram of the whole-room indirect calorimetry chamber at Vanderbilt University. 

bon dioxide production (Vco2) are used to cal- 
culate minute-by-minute EE with a system er- 
ror of less than 1%.*' This accuracy is critical 
for validation and model development of EE. 

Anthropometry. Body weight was measured 
to the nearest 0.05 kg with a digital scale. 
Height was measured to the nearest 0.5 cm 
with a stadiometer. 

Model development 

The model development algorithm was sim- 
ilar to our previous studies.'^'^ The body ac- 
celerations ascertained from the Tritrac-R3D 
and the ActiWatch were used to fit the mea- 
sured EEACT (EE - REE), first in separate mod- 
els, and then combined in one model. REE was 
calculated during the 30-min resting supine 
posture while awake and immediately follow- 
ing overnight fasting and sleeping. A nonlin- 
ear model was previously proven to be supe- 
rior compared with linear models,^ and thus 
was also adopted for the current study. After 

synchronizing the acceleration outputs with 
the measured EE, the acceleration counts from 
the Tritrac-R3D were stratified into the hori- 
zontal component (denoted H, where H = 
Vx2 + z2), and the vertical component (de- 
noted V,V = y). Each component was modeled 
by nonlinear power parameters to model indi- 
vidual EEACT as the following: 

Tritrac-R3D: EEAciik) 

= a X H(A)Pi + bx V(*)P2   (1) 

ActiWatch: ££ACT(*) = a X AW{k)P     (2) 

Tritrac-R3D-f-ActiWatch: EEAciik) 

= a X Hik)P^ + bx V(Jt)p2 -i- cx AW{k)i^   (3) 

where EBACAH) represents the estimated EEACT 
at the Mh minute, and parameters such as a, b, 
c, p, pi, p2, and p3 were optimized to predict 
EEACT that had the best fit compared with the 
measured EEACT- 
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Statistical analysis 

Descriptive data were expressed in mean ± 
1 standard deviation (SD). Optimization was 
performed using the least sum of squared er- 
ror algorithm with universal minimum. Corre- 
lation coefficient (Pearson's r) and standard er- 
rors of estimation (SEE) were used as the 
evaluation criteria: 

SEE = SD(££estlmated — ££measured)       (4) 

where ££estimated represents the estimated EE 
value by each model, and ££measured represents 
the EE measured by the indirect calorimeter for 
each study participant. The MATLAB software 
package (for Windows, version 6.1, Math- 
Works, Inc., Natick, MA) was used for the 
model development and evaluation of final 
predictions. Differences were compared by 
analysis of variance (ANOVA, Tukey's test) us- 
ing SPSS for Windows (for Windows, version 
11.0, SPSS, Inc., Chicago, IL); 95% confidence 
interval and p < 0.05 were used to identify sta- 
tistical significance. Bland-Altman^^ plots, 
which express the difference with respect to the 
mean of the two measurements in a scatter 
graph, were used to explore differences be- 
tween modeled and measured total EEACT 
across the study population. 

To further evaluate the accuracy of the mod- 
els for various activity intensities, the time pe- 
riods of the study day were categorized ac- 
cording to the intensity. We stratified the 
non-sleeping activities into four categories: 
1-2.5, 2.5-4.0, 4.0-6.0, and >6.0 times the REE 
(METs, including EEACT and REE), using mea- 

sured EE as the standard. The estimated EE 
from the prediction models within the same 
time periods of these intensities was also cate- 
gorized and compared with the measured EE 
using ANOVA. 

RESULTS 

Table 1 presents descriptive data for the 60 
study participants and for the cross-validation 
subgroup (n = 12). 

The 24-h EE was 2,132 ± 335 kcal, total EE- 

ACT was 821 ± 167 kcal, and REE was 1,403 ± 
233 kcal for the entire group. Physical activity, 
measured in counts per minute for each indi- 
vidual by the Tritrac-R3D (vector magnitude) 
and ActiWatch, was significantly correlated 
with measured EEACT {R = 0.825 ± 0.046 and 
0.646 ± 0.093, respectively, p< 0.001). The es- 
timated EEACT yielded from the predictive 
models (Eqs. 1-3) was significantly (p < 0.001) 
correlated with measured EEACT. and was 
higher (p < 0.001) than the correlation between ^—^ 
the raw counts and measured EEACT (Table 2). ■^( """2 ) 
However, compared with the EEACT measured 
in the room calorimeter, models using Acti- 
Watch (Eq. 2) and Tritrac-R3D (Eq. 1) individ- 
ually significantly underestimated total EEACT: 
-113 (-189, -38) kcal (p< 0.001) and -85 
(-161, -10) kcal (p= 0.019), respectively. The 
total EEACT predicted using the Tritrac+Acti- 
Watch model (Eq. 3) was not statistically dif- 
ferent from the measured EEACT: ~28 (—103, 
48) kcal (p = 0.781). The degrees of agreement 
between estimated EEACT using each of these 

TABLE 2.   MINUTE-BY-MINUTE R AND SEE BETWEEN EEACT MEASURED BY THE 
INDIRECT CALORIMETER AND ESTIMATED BY THE MODELS 

Model R (estimated vs. measured EE) SEE (kcal/min) 

Tritrac-R3D (Eq. 1) 
Mean ± SD 
Range 

ActiWatch (Eq. 2) 
Mean ± SD 
Range 

Tritrac ± ActiWatch (Eq. 3) 
Mean ± SD 
Reinge 

0.90 ± 0.03 
0.81-0.95 

0.73 ± 0.08^ 
0.53-0.90 

0.92 ± 0.03 
0.81-0.96 

0.364 ± 0.088 
0.234-0.570 

0.575 ± 0.142« 
0.356-0.862 

0.334 ± 0.087 
0.212-0.546 

^Significantly different from the Tritrac-R3D model and the Tritrac + ActiWatch model, all p < 0.001. 
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FIG. 2. Mean ± 2 SD of the difference between the measured (calorimeter) and estimated 24-h EEACT using predic- 
tion models (ActiWatch, Tritrac-R3D, eind Trltrac-R3D-l-ActiWatch, in Eqs. 2, 1, and 3, respectively), with respect to 
the mean of the EEACT values. 
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three predictive models and EEACT measured 
^—^ in the room calorimeter are presented by the 
( F2 Vfiland-Altman plots in Figure 2. These plots 
^     show that the main differences among the three 

predictive models were the magnitude of mean 
error and the range of deviations in estimating 
total EEACT- This analysis demonstrates that 
the combination of two accelerometers im- 
proved both parameters over the two individ- 
ual models. 

Furthermore, both the Tritrac-R3D model 
(Eq. 1) and the Tritrac+ActiWatch model (Eq. 
3) significantly (all p< 0.001) increased corre- 
lation coefficient (i?) values and reduced SEE 
compared with the ActiWatch model (Eq. 2). 
The improvements from the Tritrac-R3D model 
to the combination model, although all in pos- 
itive directions, did not reach statistical signif- 
icance in terms of i? (p = 0.278) or SEE (p = 
0.218). The summary results of the fitting pa- 
rameters of the models for Tritrac-R3D, Acti- 
Watch, and the two monitors combined (Eqs. 
1-3) are summarized in Table 2. When com- 
pared among different intensity categories, we 

^—-. found the performance from the three predic- 
C F3 J^tive models varied (Fig. 3). The ActiWatch 
^-—^ model underestimated the EE when intensity 

exceeded 4 METs (p < 0.001). Only the combi- 
nation model was able to produce nonsignifi- 
cant differences in EEACT values in all physical 
activity intensities. 

In the smaller cross-validation subgroup, 12 
subjects (characteristics summarized in Table 1) 
who  repeated  the  24-h  measurements  ex- 

pended 2,008 ± 260 kcal/day and 2,000 ± 295 
kcal/day for the first and second study day 
(p = 0.840), respectively. EEACT was also com- 
parable between the two days (820 ±199 
kcal/day and 761 ±201 kcal/day, p= 0.763). 
One of the two study days was selected ran- 
domly for model development. The fitting pa- 
rameters in the combined model (Eq. 3) for each 
of these individuals were then applied to the 
acceleration output from the other study day, 
thus deriving the predicted EEACT- The com- 
parison between the predicted and measured 
EEACT from the room calorimeter would then 
yield the cross-validity of the models. Total 
EEACT during the study period used for mod- 
eling was 710.4 ± 96.7 kcal and 665.2 ± 92.1 
kcal for measured and fitted (6.4 ± 2.3%, p = 
0.014), respectively. Total EEACT during the 
cross-validation study day was 724.5 ± 108.3 
kcal and 684.2 ± 104.2 kcal for measured and 
predicted (4.3 ± 4.8%, p = 0.140), respectively. 
The scatter plot for the measured versus pre- ^—-v,^^ 
dieted EEACT (Fig- 4) further illustrates that the^T F4j) 
model appears stable and is able to accurately ^-—-^ 
reproduce total EEACT for the majority of these 
subjects. 

DISCUSSION 

The need for accurate assessment of physical 
activity and its associated EE under free-living 
conditions is underscored by the rising toll of 
chronic diseases, such as obesity, type II dia- 

1600 

FIG. 3. Group mean EEACT in dif- 
ferent intensity categories eis mea- 
sured by the calorimeter, modeled 
by the ActiWatch, Tritrac-R3D, 
and combined (Tritrac-R3D+Acti- 
Watch) models, 'p < 0.05 compared 
with the measured values. 

O >6 METs 
B 4-6 METs 
■ 2.5-4 METs 
■ 1-2.5 METs 

Measured    ActiWatch Tritrac-R3D Combined 
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FIG. 4. Estimated total EEACT from the modeled day 
(dotted with dashed trend line) and the cross-validation 
day (triangle with solid trend line), versus the measured 
EEACT in the subgroup (n = 12). The line of identity is also 
shown for theoretical "perfect" fit. 

betes, and cardiovascular disease. While con- 
siderable evidence supports a relationship 
between physical inactivity and type II dia- 
betes,^'^ the appropriate amount of physical ac- 
tivity needed to aid in the prevention or ame- 
lioration of this disease epidemic is somewhat 
speculative, largely because of the lack of ac- 
curate and validated methodology for measur- 
ing free-living physical activity and its associ- 
ated EE. Portable accelerometers have been 
recognized as a reliable and objective technique 
for measuring physical activities under free-liv- 
ing conditions.^*'^^ However, their ability to es- 
timate EEACT has been an area that needs great 
improvement. Results of this study have 
shown that EEACT could be accurately assessed 
using these noninvasive movement monitors. 

Estimation of EE by accelerometers has been 
studied under laboratory and free-living con- 
ditions. In earlier studies in which uniaxial ac- 
celerometers were attached at different ana- 
tomic sites, vertical acceleration at the hip had 
the highest correlation coefficient with mea- 
sured EE during common activities such as 
walking and stepping.'^'^^-^^ Subsequent stud- 
ies have demonstrated improvements of the 
EE-acceleration associations with three-dimen- 

sional (triaxial) accelerometers in walking, run- 
ning, and step exercise under laboratory con- 
ditions.^^'^^ The current prediction models 
adopted by the Tritrac-R3D use the linear re- 
gression approach and only the vector magni- 
tude of counts from all three axes. The perfor- 
mance of this model was shown to be 
acceptable for level walking and jogging 
(40-70% Vogmax on a treadmill) for a small 
group of young and fit individuals in one 
study,^* but both overestimationsi^-^"'^^'^" and 
underestimations^''-^' have been reported in 
walking and other free-living physical activi- 
ties. Previously, we also found a significant un- 
derestimation of total EEACT by 50-70% using 
the Tritrac-R3D linear regression model.'^ 

Furthermore, we developed an approach to 
model EEACT using a hip-worn triaxial ac- 
celerometer (Tritrac-R3D) by separating hori- 
zontal and vertical components and using a 
nonlinear power model to associate accelera- 
tion and EEACT over the broad intensity range 
of daily physical activities. Both approaches 
significantly (p < 0.01) improved the estima- 
tion accuracy of EEACT*^'^^ However, the Tri- 
trac-RSD monitor was mainly sensitive to body 
movements at the center of mass, and thus 
could not adequately measure changes in EE 
due to physical activities performed by the up- 
per body, which are a major part of many 
sedentary activities. 

Swartz et al.^^ reported a bivariate regression 
model that combined hip and wrist accelera- 
tion data (uniaxial) and significantly improved 
prediction of EE in free-living physical activi- 
ties. In our current study, we add a wrist-worn 
uniaxial accelerometer to our previously tested 
hip-worn triaxial accelerometer model, and 
further advanced this modehng concept using 
nonlinear modeling. One major advantage of 
this type of nonlinear modeling was that if a 
better fitting could be achieved with a linear 
model, then the power parameters (p values in 
Eqs. 1-3) would then be equal or very close to 
1. In all three models, all power parameters 
were significantly less than 1 (all p < 0.01). This 
was in agreement with our previous findings.'^ 

By comparing the results from different 
models, the estimated EEACT using Tritrac-R3D 
(Eq. 1) was significantly better than using Ac- 
tiWatch (Eq. 2), in terms of SEE and R (Table 
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2). This indicated stronger associations be- 
tween EEACT and the acceleration components 
measured at or close to the center of body mass 
rather than at the wrist, logically reflecting 
higher energy costs due to weight-bearing 
movements. Movements from the arm can of- 
ten be quick even with little force exertion, thus 
leading to the slight overestimation of EEACT 
(6.2 ± 4.7%, p = 0.121) during low-intensity ac- 
tivities (1-2.5 METs) by the ActiWatch model 
(Fig. 3). In contrast, the ActiWatch model sig- 
nificantly underestimated EEACT during activ- 
ities of higher intensity (>4.0 METs) because of 
less upper body motion during walking and 
stepping. The Tritrac-R3D model in Eq. 1 
slightly underestimated the lower-intensity 
physical activities (-4.3 ± 6.9% during 1-2.5 
METs, p = 0.459), very likely because of the 
lack of signals picked up by the monitor dur- 
ing upper body movements, which was con- 
sistent with our previous study.'^ By adding 
the ActiWatch, the combination model shghtly 
improved SEE and R values, compared with 
the Tritrac-R3D model (Table 2). Although nei- 
ther achieved statistical significance, this model 
was the only one that showed nondifferential 
estimation of EEACT during all non-sleeping 
physical activity intensity categories. As a re- 
sult, total EEACT was predicted most accurately 
by the combined model (97.7 ± 3.2%), com- 
pared with ActiWatch (86.0 ± 4.7%) and Tri- 
trac-R3D (90.0 ± 4.6%) models. The contribu- 
tions to the total estimated EEACT by the 
combination model were 67 ± 23% and 33 ± 
18% from the acceleration components from 
the Tritrac-R3D and the ActiWatch, respec- 
tively. In line with our hypothesis, these find- 
ings collectively suggest that the combination 
model used Tritrac-R3D data for most of the 
weight-bearing activities when EE intensities 
were relatively high, and used the ActiWatch 
data for upper body activities during more 
sedentary activities when the intensities were 
lower. 

This study had some limitations. First, it 
only included healthy normal adult females 
(11 African Americans, two Asian American, 
and 47 Caucasians), which may limit the gen- 
eralizability of these model parameters. Un- 
like our previous study, we did not derive 
the generalized parameters for our models. 

mainly because this was a fairly homoge- 
neous population (middle-aged sedentary fe- 
males) that lacked the spectrum of variations 
for generalization. However, the concept of 
using activity monitors to assess EEACT has 
been proven valid and feasible. Furthermore, 
we concentrated on a sedentary population 
with relatively high body mass index. This 
approach, however, allows us to establish a 
baseline for future studies on energy metab- 
olism and physical activity in obesity and 
type II diabetes. 

In conclusion, this investigation evaluated 
several EEACT prediction models using a hip- 
worn triaxial accelerometer (Tritrac-R3D) and 
a wrist-worn uniaxial accelerometer (Acti- 
Watch) in a group of healthy women under 
close to free-living conditions in a whole-room 
indirect calorimeter. We found that a combined 
model using both monitors better estimated 
EEACT across all intensities compared with any 
single monitor model. In our study group, it 
has a 96.5% chance to detect total EEACT within 
±75 kcal, which may be clinically significant in 
exercise or diet prescription. This model was 
further vaUdated for its predictive accuracy 
and stability in a subgroup. It is possible that 
the concept of developing predictive models 
for healthy individuals described in this study 
can be extended and validated in disease pop- 
ulations, such as type II diabetes. This may fa- 
cilitate development of physical activity guide- 
hnes used as adjuvant therapy for the 
prevention and treatment of type II diabetes. 
Currently, we are using this approach to con- 
duct a prospective study in assessing physical 
activity levels and EE in type II diabetic pa- 
tients under various intensities of disease man- 
agement protocols. 
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